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ABSTRACT

Final Report: Microbiorobots for Manipulation and Sensing

Report Title

Although nano- and microfabrication techniques are rapidly advancing, it remains a challenge to fabricate separate individual microscale 
actuators and sensors en masse. A possible resource for such tiny elements exists within microorganisms. Specifically, the abilities of 
bacteria to move in a self-propelled manner and to detect and process sensory information represent enormous potential that can be 
harnessed and integrated into microscale robotics and biosensor systems. The objective of the proposed program is to develop a platform that 
integrates bacteria with enhanced motility and signaling behavior (through synthetic biology) into a microscale sensing and robotic system. 
The platform, termed microbiorobots (MBRs), consists of controllable, reconfigurable elements of a microscale sensing and transportation 
network in biofactory-on-a-chip systems. The goal of this collaborative proposal, initiated at Drexel University with the participation of 
Rensselaer Polytechnic Institute, is to use multiple types of bacteria, which can be roughly categorized into two functional types, 
propulsion/actuation and sensing/computation, to enhance the capabilities of existing microrobots through localized sensing and 
computation. In pursuit of this goal, we use synthetic biology to engineer microbes capable of sensing chemicals or other environmental cues 
and tuning their motility. In addition we use intercellular communication to further coordinate the microbial populations. The use of bacteria 
as bio-info-micro systems represents a critical step toward both how microbiorobotics can be introduced as a tool in nano/microscale 
engineering work as well as how scientists and engineers can learn from nature using modern fabrication, genetic manipulation, and 
deterministic and stochastic modeling and control. This platform will be applicable in microscale assembly systems and biosensors that 
require autonomous coordination of bacteria.
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Prof. Kim has been selected to receive the prestigious 2016 Netexplo Award for his work with micro-swimmer robots. Since 
2008, based on a panel vote participated in by over 200 experts and business professionals from around the world, UNESCO 
and Netexplo have announced annually the Netexplo 100, a selection of the 100 most promising digital initiatives.  From 
these, the ten most exceptional, innovative and promising projects are selected as award winners and presented at the 
Netexplo Forum in Paris.  From these ten, a final Grand Prix 2016 award is selected.

Netexplo is an independent observatory that studies the impact of digital technology on society and business.  Created in 
2007 by Martine Bidegain and Thierry Happe in partnership with the French Senate and the French Ministry for the Digital 
Economy, Netexplo takes a unique approach to understanding digital society. Through its International University Network, 
the Netexplo Observatory scans the world for the new faces of tech and their inventions. The founding partners, the Senate, 
the Ministry for the Digital Economy and HEC Paris business school share with Netexplo a commitment to covering every 
aspect of digital innovation, whether technological, commercial, organizational, social or environmental.

Dr. Kim’s research is with tiny swarming robots that have the potential of swimming through a person’s arteries to detect 
and clear blockages or to deliver a drug to a precise area of the body.  As an award winner, he presents his work on February 
10, 2016 at Paris-Dauphine University, Paris.
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Scientific Progress

We have successfully developed a platform that integrates bacteria with enhanced motility and signaling behavior into a 
microscale sensing and robotic system. The platform, termed microbiorobots (MBRs), consists of controllable, reconfigurable 
elements of a microscale sensing and transportation network in biofactory-on-a-chip systems. Physically, our MBRs are 
fabricated microscale chips with bacterial cells attached to their surface. The MBRs are made of materials with neutral 
buoyancy, thus enabling us to suspend them in a fluidic working environment.

1. We use synthetic biology to harness and improve not only the motility behavior of the bacteria, but also their sensory,
biochemical signaling, and information processing capabilities.
2. By integrating these capabilities with the motility behavior of the bacteria, we can achieve autonomous coordination of the 
microbiorobots, without external signaling mechanisms. Therefore, our proposed system is controllable in the
conventional way (i.e. by using external signaling), as well as through local, internal signaling or autonomous coordination.

We have used multiple types of bacteria that can be roughly categorized into two functional types, propulsion/actuation and 
sensing/computation. In pursuit of this goal, we have developed synthetic biology to engineer microbes capable of sensing 
chemicals or other environmental cues and tuning their motility. In addition, we have used intercellular communication to further 
coordinate the microbial populations. The use of synthetic biology allows us to build systems that can be easily tuned and 
manipulated, providing an experimental system where we have the unique ability to adjust a variety of parameters. The 
propulsion/actuation functionality is provided by swimming, flagellated bacteria that deliver propulsive forces for the MBRs. The 
sensing/computation functionality is provided by genetically engineering bacteria cells that contain novel synthetic genetic 
networks that enable them to sense and produce various types of small signal molecules. These small signal molecules are 
used as tokens of information that can be processed with appropriate synthetic networks. The sensing and computation 
capabilities of the bacteria have been used in autonomous coordination of the MBRs and in their utilization as biosensors.

Fundamental scientific progresses addressed by this research program include (i) the use of synthetic biology in hybrid 
microrobotics, (ii) obtaining answers to basic questions regarding methods for control input generation using external stimuli 
that lead to vision-based feedback control of MBRs, (iii) the possibility of using cell-cell communication for coordinated, 
population level behaviors to achieve biosensing and swarm control of MBRs, thus enabling an entirely new class of sensing 
and actuation systems. The ability to complete this all at the microscale enables the realization of miniaturized biofactories 
whose applications are limited only by our imagination but include in vitro procision drug delivery and chemical sensors, each of 
which has its own needs. Given the still embryonic state of microbiorobotics, any significant progress toward the control of 
genetically modified engineered bacteria has great impact.

Technology Transfer

N/A



1 

Autonomous Motion Control of Bacteria 

Powered Microrobots Using Electric Fields 

Ph.D Thesis Defense 

April 1th, 2016 

 Hoyeon Kim 

Advisor : Prof. Min Jun Kim 

 

 
Biological Actuation, Sensing & Transport Laboratory  

Mechanical Engineering and Mechanics  

Drexel University 

 

I. Introduction 

• Motivation 

• Reviews 

• Objective  

II. Research works 

• Hydrodynamics of Bacterial carpet using μPIV 

• Static Obstacle Avoidance for Bacteria Powered Microrobots 

• Dynamic Obstacle Avoidance for Bacteria Powered Microrobots 

III. Conclusion 

IV. Future Works 

V. Achievements 

CONTENTS 

2 



2 

I. Introduction 

• Motivation 

• Reviews 

• Objective  

II. Research works 

• Hydrodynamics of Bacterial carpet using μPIV 

• Static Obstacle Avoidance for Bacteria Powered Microrobots 

• Dynamic Obstacle Avoidance for Bacteria Powered Microrobots 

III. Conclusion 

IV. Future Works 

V. Achievements 

CONTENTS 

3 

 Potential tasks  

•MEMS 

• FIB equipment 

www.youtube.com/watch?v=1R0EHe9iYQw www.youtube.com/watch?v=KqW3LtcQoZY www.youtube.com/watch?v=fXzVNSxWlBg  

Motivation  
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ETH at 2010 NIST Mobile Microrobotics Challenge, T.Y Hung, 2014, Ghosh 2009 Floyd 2008  Zhang 2009 Ghosh 2009 

Technologic Issues for Microrobotics  

Fabrication 

Control 

Advanced technology 

 Artificial microswimming robot 

 Hybrid microswimming robot 

Issues for the advanced task 
 

Localization 

Navigation 

Motion control for specific tasks 

Autonomous navigation 
 

Support optimal path 

Prevent damage of microrobot 

Save time, energy  

Increase efficiency 

Motivation 

4 μm 

10 μm 

10 μm 
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 Autonomous motion control for navigation 

1. Micromanipulation 

Davide J 2011 • Microassembly test result using  A* 
2. Optical Tweezer 

Tao J. 2011 • Cell transportation using  RRT 

3. Magnetic field for Rolling microrobot 

Samuel C. 2015 • Motion planning using  RRT 

Reviews 

6 
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• An autonomous navigation algorithm using Bacteria Powered 

Microrobots 
 

1. Static obstacle avoidance 

2. Dynamic obstacle avoidance  

 

 

• Hydrodynamics of bacterial carpet under boundary effect  
 

1. Visualize the flow field using μPIV 

2. Analyze the flow field with bounded and unbounded condition  

 

 

 

• Collision with static obstacle • Collision with dynamic obstacle 

20μm 

Objectives 
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 Introduction of Bacteria Powered Microrobots (BPMs) 

Inorganic body (SU-8 structure) 

Biomolecular actuator of bacterial carpet 

 (Serratia marcescens) 

• Example of BPM 

Concept of BPM 

Turner et.al, 2000 

• Swimming motion of bacteria • Flagellum motor  Characteristics of Bacteria in Swimming 
 

 3D motion in fluids 

  3 – 5 peritrichous flagella 

  Flagella bundle when all motors turn CCW 

  When motors turn CW, bacteria tumble 

  Average swimming velocity: 12 – 50 µm/s 

  Random walk  

Kim 2009 

Collective Motion of Flagella 
 

  Local fluid flow motion 

  Large global coordination due to hydrodynamic        

     interaction 

  A net thrust on the microsturcture causing  

     rotational and/or translational movement  

• Self-actuation of BPM 

Bacteria Powered Microrobots 

9 

Fabrication of Bacteria Powered Microrobots  

• Release microstructure by Dextran layer 

Advantage of biological microrobots 
 

 Draw energy from fluid 

 Easily manufactured 

 Self-coordinated (quorum sensing or hydrodynamics) 

 Fully controllable due to negative charge in body 

 Adjust orientation of microrobots 

• Scheme of a BPM 

UV exposure 

Cr Mask 

SU-8 2002 

Sacrificial layer 

Glass substrate (No1) 

• Fabrication of microstructure 

• Electrophoretic control  

Sakar  2011 

• Swarming agar plate ( Serratia marcescens ) 

Steager et. al, 2008 

Bacteria Powered Microrobots 

10 
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Propulsive force by bacterial carpet 

• Tethered case 

• Untethered structure(Self-actuation of BPM) 

1. System setup 

  μPIV setup 

o  Laser : 633 nm He-Ne laser 

o  Fluorescent bead size : 0.2μm diameter 

o  Camera : High speed camera 250 fps 

o  Objective lens : 100 ×  

• Tethered structure 

  Tethered structure 

o  Dimension : 32 × 34 μm2  

o  Thickness : 35 μm using SU-8 2035  

  Untethered structure (BPM) 

o  Dimension : 32 × 34 μm2  

o  Thickness : 3 μm using SU-8 2002  

• Untethered case 

22 μm 

1 μm 

  Observed planes 

o  Untethered case : 12 planes (0~22 μm) 

o  Tethered case : 1 plane (1 μm )  

I Hydrodynamics of Bacterial carpet 

11 

Propulsive force by bacterial carpet 

• Diffusion coefficient comparison 

2. Experimental results : Tethered structure cases 

• Flow field tethered structure (at 6 μm height from bacterial carpet)  

 Results summary 
  

 There are variance on Brownian motion due to measurement noise. 
 

 The bacterial carpet generates much stronger flow field than Brownian motion. 
 

 The strongest flow is generated at 6~8 μm height from the bacterial carpet. 
 

 The flow field is not decreasing dramatically like ‘Dalton paper’. 
 

 The bounded condition (less than 80 μm distance with boundary) affect the flow fields on more than 12 μm height. 

I Hydrodynamics of Bacterial carpet 

• MSD (μm2 ) comparison 
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Propulsive force by bacterial carpet 

3. Experimental results : Untethered structure cases 

• Untethered structure(Self-actuation of BPM) • MSD comparison 

 Results summary 
  

 The bacterial carpet was close to wall and boundary effects on the flagella-induced flow field must be taken into account. 
 

 The bacteria secreted lubrication layer, a thin layer of liquid, approximately 1 μm in depth, separates  the bacterial carpet 

from the glass substrate. 
 

 The strong velocity flow profile was observed above the middle of the moving BPM. 
 

 The strong streams of flow were much stronger in the moving BPM than the same area on the static structure surface. 
 

 The MSD of the untethered BPM is larger than the tethered cases by 36.3 μm2. 

I Hydrodynamics of Bacterial carpet 

t = 0.14s t = 1.14s t = 2.14s 

13 

Propulsive force by bacterial carpet 

4. Comparison of ensemble velocity 

• Ensemble Average Velocity 

• Accumulation of displacement • Ensemble motion  

 Results summary 
  

 The effect of the fluid near-boundary 

leads to the increase of the resistance 

coefficients in terms of normal and 

longitudinal resistance. 

Average std 

Tethered 10.2 μm/s 5.3 

Untethered 20 μm/s 10.4 

I Hydrodynamics of Bacterial carpet 

14 
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Constraint elements for obstacle avoidance using BPMs 

𝜷𝟏  ≔
1

𝑘𝑡
 𝑐𝑜𝑠𝜃𝑖

𝑁𝑏

𝑖=1

 𝜷𝟐  ≔
1

𝑘𝑡
 𝑠𝑖𝑛𝜃𝑖

𝑁𝑏

𝑖=1

 

𝜷𝟑  ≔
1

𝑘𝑟
 (𝑏𝑖𝑥𝑠𝑖𝑛𝜃𝑖 − 𝑏𝑖 ,𝑦 𝑐𝑜𝑠𝜃𝑖) 

𝑁𝑏

𝑖=1

 

1. Self-actuation of BMPs 

• Coordinate system 

• Self-actuation velocities 

• Collision with obstacle 

High probability of collision risk  
 

 Inherent motion of BPMs caused by bacterial carpets 

Uncontrollable motion by electric fields 

 The resultant locomotion by self-actuation and electrophoretic motion 

Uncontrollable motion 

Kinematic model of self-actuation BMP  

𝑉𝑥 = 𝑝 𝜷𝟏 , 𝑉𝑦 = 𝑝 𝜷𝟐, 𝛼 = 𝑝 𝜷𝟑 

II Static Obstacle Avoidance  

16 
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Constraint elements for obstacle avoidance using BPMs 

where, 𝑉𝑥 = 𝑝 𝜷𝟏 ,     𝑉𝑦= 𝑝 𝜷𝟐,  𝛼 = 𝑝 𝜷𝟑,     𝜷𝟒 ∶ 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑜𝑟𝑒𝑡𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

𝑝  : mean propulsive force (0.41pN). 

𝛽𝟏,  𝛽𝟐 ∶  
𝜇𝑚

𝑠𝑝𝑁
,    𝛽𝟑 :

𝑟𝑎𝑑

𝑠𝑝𝑁
 ,     𝛽𝟒 :

𝜇𝑚

𝑠𝑉𝑐𝑚
 

𝑉𝑔𝑥 = 𝑉𝑥𝑐𝑜𝑠𝜃 − 𝑉𝑦𝑠𝑖𝑛𝜃  

𝑉𝑔𝑦 = 𝑉𝑥𝑠𝑖𝑛𝜃 + 𝑉𝑦𝑐𝑜𝑠𝜃 

𝑥𝑖
𝑦𝑖
𝜃𝑖
=

𝑥𝑖−1
𝑦𝑖−1
𝜃𝑖−1
+  𝑝 
𝑐𝑜𝑠𝜃𝑖−1 −𝑠𝑖𝑛𝜃𝑖−1 0
𝑠𝑖𝑛𝜃𝑖−1 𝑐𝑜𝑠𝜃𝑖−1 0
0 0 𝛼

𝜷𝟏
𝜷𝟐
𝜷𝟑

𝑡𝑠   +  
𝑈𝑥
𝑈𝑦
0

𝜷𝟒𝑡𝑠 

∆𝑑𝑥= 𝜷𝟒𝑈𝑥  

∆𝑑𝑦= 𝜷𝟒𝑈𝑦 

Unit : 

1. Self-actuation of BMPs 

  Kinematic model of BMP’s locomotion  

𝑝𝑖 = 𝑝𝑖−1 + 𝐿𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝒔𝒆𝒍𝒇−𝒂𝒄𝒕𝒖𝒂𝒕𝒊𝒐𝒏 + 𝐿𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒌𝒊𝒏𝒆𝒕𝒊𝒄 

  Global coordinate system for position of BPMs 

II Static Obstacle Avoidance  
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Constraint elements for obstacle avoidance using BPMs 

2. Reliability of kinematic model 

Modeling Validation using 40 × 43 μm2 

• Self-actuation • Motion with +20 V/cm (right direction) 

Modeling Validation using 20 × 23 μm2 

20 μm 

II Static Obstacle Avoidance  
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Constraint elements for obstacle avoidance using BPMs 

3. Distorted electric field around obstacles 

o  COMSOL Simulation  Setup : Particle is negative charged particle. ( 9.1 × 10-17 kg, -1.6021 × 1011 C ),  

                                                     Obstacle is regarded as insulator,   Input - Anode (Left),   Cathode (Right) with 10 V/cm 

• Particle motion • Result of  Particle trajectories 

Electric field 

• The difference of heading angle 

 Simulation Summary 
 

 There exist zero potential area around the obstacle which gives non-mobility to the particle. 

 The deformed electric field steers the particle toward the distorted angle. (Maximum 3º) 

 As far away from obstacles, the effect of distorted electric field becomes week. 

 Unmatched movement with desired motion 

II Static Obstacle Avoidance  
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Constraint elements for obstacle avoidance using BPMs 

4. The effect of distorted electric field 

Demonstration Result 
 

  BPM cannot move at zero potential area. 

  BPM follows the deformed electric field. 20μm 20μm 

20μm 

: Electric field direction 

II Static Obstacle Avoidance  
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Constraint elements for obstacle avoidance using BPMs 

5. Omnidirectional motion (holonomic motion) 

 Control characteristics 
 

 The direction of electric field results from x voltage, y voltage inputs. 

 The magnitude of electric field is proportional to  the sum of x voltage, y voltage inputs. 

 The superposed electric field can be a range of 0~360º. 

 The maximum resultant control input is 20 V/cm in the system. 

Kim Group 2007 

BPM 
0 

π 
-π 

• Direction of electric field • Displacement  

𝑑1 

𝑑2 

t2 t1 

t1 t2 

• Motion example 

: Magnitude of electric field 

II Static Obstacle Avoidance  
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Proposed Static Obstacle Avoidance Approach 

1. Obstacle avoidance approach based on an objective function 

𝑓 𝑈𝑥, 𝑈𝑦 = 𝛼 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑈𝑥, 𝑈𝑦, 𝐺𝑜𝑎𝑙 + 𝛾 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑈𝑥, 𝑈𝑦 + 𝜔 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑈𝑥, 𝑈𝑦 + 𝛿 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑈𝑥, 𝑈𝑦) 

1) heading( ) : to choose the input which makes BPM head to the goal 

2) movement( ) : to choose the input which makes BPM move a longer displacement 

3) clearance( ) : to avoid the input which makes BPM collide to obstacles 

4) control( ) : to choose the input which makes BPM move toward strong controllable area 

 The procedure to choose the control input from the objective function 
 

  1. Consider the instant position of a BPM with boundary information 

  2. Calculate each function of the objective function depending on all admissible control inputs 

  3. Find an optimal control input which has the maximum cost of the objective function 

II Static Obstacle Avoidance  
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Proposed Static Obstacle Avoidance Approach 

2. heading function 

3. movement function 

𝒎𝒐𝒗𝒆𝒎𝒆𝒏𝒕 𝑼𝒙, 𝑼𝒚 = 𝜷𝟒𝑡𝑠 𝑈𝑥
2 + 𝑈𝑦

2 

𝒉𝒆𝒂𝒅𝒊𝒏𝒈 𝑼𝒙, 𝑼𝒚, 𝑮𝒐𝒂𝒍 =
𝒗∙𝒘

𝒗 𝒘
÷ 𝜋   

• Resultant cost • Situation of a BPM and Goal 

II Static Obstacle Avoidance  

23 

Proposed Static Obstacle Avoidance Approach 

4. clearance function 

• C-space to check collision • Map (500 µm x500 µm) 

𝒄𝒍𝒆𝒂𝒓𝒂𝒏𝒄𝒆 𝑼𝒙, 𝑼𝒚 ∝
1

𝑑𝑖𝑠𝑡 𝑐𝑠𝑝𝑎𝑐𝑒
 

x movement 

×10-2 

• Resultant cost 

BPM 

II Static Obstacle Avoidance  
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Proposed Static Obstacle Avoidance Approach 

5. control function 

𝒄𝒐𝒏𝒕𝒓𝒐𝒍 𝑼𝒙, 𝑼𝒚 = 
𝐸𝐹 ∙ 𝐼𝑛𝑝𝑢𝑡 𝑈𝑥𝑖, 𝑈𝑦𝑖

𝐸𝐹
  

8

𝑖=1

 

• Resultant cost • Intrinsic potential field 

i =1 
i =2 

i =3 

i =4 
i =5 i =6 

i =7 

i =8 

BPM 

• At the next position 

II Static Obstacle Avoidance  
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Proposed Static Obstacle Avoidance Approach 

6. The chosen input from total value of the objective function 

• Result of the objective function 

𝑓 𝑈𝑥, 𝑈𝑦 = 𝜶 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑈𝑥, 𝑈𝑦, 𝐺𝑜𝑎𝑙 + 𝜸 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑈𝑥, 𝑈𝑦 +𝝎 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑈𝑥, 𝑈𝑦 + 𝜹 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑈𝑥, 𝑈𝑦) 

 Characteristic of the objective function 
 

 Optimal input to maximize the cost of objective function depending on weight values of , , ω, . 
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Input angle 
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Experimental Results  

1. System setup 

Obstacle structures 

o  Material : SU-8 2010 

o  Height : 20 µm  

Control System 

Power supply Microscope 

Image 
acquisition 

Experiment 
chamber 

Image 

 BPMs 

o Material : SU-8 2002 

o Shape : 32 × 30 µm2 

o Height : 3 µm 

Experiment Chamber 

o Material : PDMS 

o Filled with PBS buffer 

o Two pairs of platinum wire 

 Control System  

o 0.16 sampling time 

o C++ programming  

o GUI interface 

II Static Obstacle Avoidance  
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 One obstacle environment (71 × 74 µm2) 

 Maximum Voltage input: 20 V/cm 

 Parameters for algorithm 

Experimental Results  

2. Single obstacle avoidance with simulation result 

α γ ω δ β1 β2 β3 β4 

0.25 0.3 0.5 0.5 0.01 0.03 0.01 0.32 

II Static Obstacle Avoidance  
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 Two obstacles environment  

      (71 × 74 µm2 and 52 × 57 µm2) 

 Maximum Voltage input: 20 V/cm 

 Parameters for algorithm 

3. Two obstacles avoidance with simulation result 

Experimental Results  

α γ ω δ β1 β2 β3 β4 

0.5 0.4 0.8 0.41 0.1 0.02 0.01 0.14 

II Static Obstacle Avoidance  
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(ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ∶ 0.4, 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ∶ 0.3, 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒: 0.6, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∶ 0.55) (ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ∶ 0.45,𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡: 0.3, 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒: 0.6, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∶ 0.7) 

• Control input • Control input 

4. Routing motion with different weight values 

Experimental Results  

II Static Obstacle Avoidance  
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(ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ∶ 0.45 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ∶ 0.41, 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒: 0.6, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∶ 0.61) (ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ∶ 0.45,𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡: 0.41, 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒: 0.6, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∶ 0.55) 

• Comparison of trajectories • Comparison of trajectories 

5. Routing motion with different weight values II 

Experimental Results  

II Static Obstacle Avoidance  
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• Comparison of trajectories 

6. Routing motion in Multiple obstacles with different weight values 

Experimental Results  

α = 0.8, γ = 0.5, ω = 0.54 ,δ = 0.5  α = 0.8, γ = 0.5, ω = 0.44 ,δ = 0.5 

Return  

to 

 the initial position 

II Static Obstacle Avoidance  
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7. Other Multiple obstacles avoidance results  

Experimental Results  

Min d between obstacles Total Exp. No Success rate 

One obstacle  N/A 3 100% 

Two obstacles 60 3 100% 

Three obstacles 50 10 100% 

Multiple obstacles 30 18 88% 
 Summary of experimental results 
 

 The feasibility of the algorithm is verified with different conditions and various BPMs. 

 The trajectories result from the different weighting ,,ω,. 

 Most cases have applied BPMs with the maximum control input voltage.  

II Static Obstacle Avoidance  
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I. Introduction 

• Motivation 

• Reviews 

• Objective  

II. Research works 

• Hydrodynamics of Bacterial carpet using μPIV 

• Static Obstacle Avoidance for Bacteria Powered Microrobots 

• Dynamic Obstacle Avoidance for Bacteria Powered Microrobots 

III. Conclusion 

IV. Future Works 

V. Achievements 

CONTENTS 
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Constraint elements for obstacle avoidance using BPMs 

1. Distorted electric field around dynamic obstacles : undesired control result 

• COMSOL simulation results • Distorted electric field  • Profile of Distorted electric field  

o  COMSOL Multiphysics Simulation  Setup : Moving mesh, 10 μm/s with –x-direction. Electric field with 10 V/cm  

 Simulation Summary  

  The distorted electric field area forms a ripple formation from the obstacle. 

  The back side of the object has more ununiformed electric potential field. 

 Undesired control result 

III Dynamic Obstacle Avoidance 
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Constraint elements for obstacle avoidance using BPMs 

2. Unexpected motion speed of dynamic obstacle 

• Demonstrate of collision risk 

High probability of collision risk 
  

 The high collision risk results from a 

     sudden speed of dynamic obstacle. 
 

 The motion of dynamic obstacle will   

      be unpredictable. 
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• Distance between BPM and dynamic obstacle • Velocity of dynamic obstacle 

• The difference of control input angle 

Δθ 

BPM 

Dynamic obstacle 
Δθ = | θci  ̶  θdo |  

θci : control input 

θdo : dynamic obstacle 

• Description of Δθ  

III Dynamic Obstacle Avoidance 

36 



19 

Proposed Dynamic Obstacle Avoidance Approach 

1. Supplementary VFH method to the static obstacle avoidance approach 

 Location of BPM and dynamic obstacle 

Procedure to choose the optimal control input 

Step 1 : Exclude the control inputs which heads to obstacles using the redefined VFH  (𝑣 𝑈, 𝜃 ) 

                   𝜽𝒗 = 𝜃𝑖     𝑓𝑜𝑟    𝐵𝐷 𝜃𝑖  ≤  𝑠𝑎𝑓𝑒 𝑟𝑎𝑛𝑔𝑒,  1 ≤ 𝑖 ≤ 360 

                     𝑇𝜃 = min( 𝜃 − 𝜽𝒗 ) 

                                    𝑣 𝑈, 𝜃 =

0 𝑖𝑓 𝑇𝜃 ≤  휀𝑠
𝑇𝜃
2

𝑇𝑚𝑎𝑥
2 𝑖𝑓 휀𝑠 <  𝑇𝜃 ≤ 𝑇𝑚𝑎𝑥   

1 𝑖𝑓 𝑇𝑚𝑎𝑥 ≤  𝑇𝜃

 

 

Step 2 : Find the optimal control input using objective function on remained candidate inputs  

Goal 

BPM 

v 

w 
θ 

III Dynamic Obstacle Avoidance 

37 

Proposed Dynamic Obstacle Avoidance Approach 

2. Simulation of the proposed approach using MATLAB  

II Dynamic Obstacle Avoidance 
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Proposed Dynamic Obstacle Avoidance Approach 

3. Evaluation of performance in terms of potential risk 

Danger Index : 

 Product method based criterion 

    1st Factor : The relative distance factor between BPM and dynamic obstacle 

         𝐷𝐵𝑂 ∶ 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝐵𝑃𝑀 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 

        𝑔𝐷 𝐷𝐵𝑂 =
                0         ∶ 𝐷𝐵𝑂 ≥ 𝐷𝑚𝑎𝑥

  𝑘
1

𝐷𝐵𝑂
−
1

𝐷𝑚
 ∶ 𝐷𝐵𝑂 < 𝐷𝑚𝑎𝑥

   

  

                  𝑤ℎ𝑒𝑟𝑒,  𝑘 =
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
 

 

                                  𝐷𝑚𝑎𝑥  =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑐𝑛𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝐵𝑃𝑀 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 (𝑠𝑎𝑓𝑒 𝑟𝑎𝑛𝑔𝑒)  

                                  𝐷𝑚𝑖𝑛 =   𝑅𝑎𝑑𝑖𝑢𝑠𝐵𝑃𝑀 ∗ 𝑘𝑣 + 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠𝑒𝑙𝑓  ,  𝑘𝑣 =
𝑉𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑜𝑏𝑠𝑡𝑎𝑙𝑐𝑒

𝑉𝑚𝑒𝑎𝑛 𝑜𝑓 𝐵𝑃𝑀
 

    2nd Factor : The relative angle of control input comparing to the angle toward the dynamic obstacles 
 

           𝐴𝐶𝑂 ∶ 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑔𝑎𝑝  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑎𝑛𝑔𝑒𝑙 𝑓𝑟𝑜𝑚 𝐵𝑃𝑀 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒   
 

         𝑔𝐴 𝐴𝐶𝑂 =   
                            0                             ∶ 𝐴𝐶𝑂 ≥ 𝐷𝑏𝑙𝑜𝑐𝑘𝐴𝑛𝑔(𝐷𝐵𝑂)/2 + 𝜃𝑏𝑦 𝑠𝑒𝑙𝑓−𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛

𝐴𝐶𝑂

𝐷𝑏𝑙𝑜𝑐𝑘𝐴𝑛𝑔(𝐷𝐵𝑂)/2+𝜃𝑏𝑦 𝑠𝑒𝑙𝑓−𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛
 ∶ 𝐴𝐶𝑂 < 𝐷𝑏𝑙𝑜𝑐𝑘𝐴𝑛𝑔(𝐷𝐵𝑂)/2 + 𝜃𝑏𝑦 𝑠𝑒𝑙𝑓−𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛

  

 

                 𝑤ℎ𝑒𝑟𝑒,  𝐷𝑏𝑙𝑜𝑐𝑘𝐴𝑛𝑔 𝐷𝐵𝑂 =  𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑎𝑛𝑔𝑙𝑒 𝑏𝑦 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝐷𝐵𝑂 

𝒈𝑫(𝑫𝑩𝑶) ∙ 𝒈𝑨(𝑨𝑪𝑶) 

III Dynamic Obstacle Avoidance 
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Experimental Results  

1. System setup 

  Dynamic obstacle structures 
 

o  Material : SU-8 2010 

o  Thickness : 3 µm 

o  Nickel deposition : 200 nm  

  z-coil to overcome friction 
 

o  Lift force : 1.5mT (2V) 

o  Tilt the structure 

 Control System for main algorithm 
 

o 0.16 sampling time 

o C++ programming  

o GUI interface to input goal position 

 Control System for dynamic obstacle 
 

o 0.16 sampling time 

o C++ programming  

o GUI interface for manual control 

III Dynamic Obstacle Avoidance 
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Experimental Results  

2. Magnetotaxis test on BPMs w/wo electric fields 
  Setup : Magnetic field for more than 2 min with 20 Voltage input 

1. Self-actuation test 2. Electric field test 

• Comparison of orientation angle velocity 

Magnetotaxis test results  

  In terms of self-actuation, there is not critical difference with/without  

     magnetic fields.. 

  The motion control of BPMs is not affected by the magnetic fields. 

  It is not a problem with the application of magnetic fields for  dynamic 

     obstacles. 

III Dynamic Obstacle Avoidance 
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Experimental Results  

3. Single dynamic obstacle avoidance 
 Case I 

 Case II  Case III  Case IV 

Case α γ ω δ 
Safe  

range 

I 0.5 0.6 0.5 0.7 100 

II 0.5 0.5 0.7 0.5 80 

III 0.3 0.2 0.5 0.7 100 

IV 0.3 0.4 0.6 0.5 70 
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Experimental Results  

4. Danger index for single dynamic obstacle avoidance experiments 

 Example using Case II 

•  Resultant trajectories •  Relationship between gap and distance •  danger cost using gA(Aco ) and gD(DBO ) 
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• Danger index of Case I • Danger index of Case III • Danger index of Case IV 

Case 
BPM 

𝑣  

Dynamic obstacle v Mean  

distant mean max 

I 9.6 12.0 92.6 40.2 

II 18.7 5.3 102.4 30.3 

III 15.8 29.1 57.4 29.1 

IV 12.0 13.5 85.7 75.0 
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Experimental Results  

5. Single dynamic obstacle avoidance using strong self-actuation BPMs 

 Case V 

 Case VI 

Case α γ ω δ Safe range 

V 0.3 0.2 0.5 0.6 100 

VI 0.3 0.2 0.7 0.6 80 

Case β1 β2 β3 β4 

Mean danger 

index 

V -20.3 12.1 6.8 0.8 0.095 

VI -7.6 -12.6 7.1 0.9 0.146 
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Case 
BPM 

𝑣  

Dynamic obstacle v Mean  

distant mean max 

V 20.1 9.7 99.1 40.2 

VI 15.3 14.3 99.8 30.3 

 Danger index of Case V  Danger index of Case VI 
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Experimental Results  

6. Multi dynamic obstacle avoidance 

 Case VII 

 Case VIII 

Case α γ ω δ Safe range 

VII 0.3 0.4 0.6 0.5 120 

VIII 0.3 0.2 0.7 0.5 100 

Case β1 β2 β3 β4 

Mean danger 

index 

VII -1.89 5.03 0.01 0.76 0.15 

VIII 5.01 6.20 0.08 0.81 0.02 

• Danger index of Case VII 

• Danger index of Case VIII 

Case 
BPM 

𝑣  

Dynamic obstacle v 

mean max 

VII 10.9 12.7 116.1 10.9 167.7 

VIII 15.3 14.3 100.9 21.7 180.9 

Summary of experimental results 
 

The feasibility of the algorithm is verified  

with various situations. 
 

The performance is evaluated using the 

danger index. 
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 Development of the obstacle avoidance algorithm for BPMs  
 

 Consideration of  BPMs’ characteristics and control systems design 

 Improvement of controllability for BPMs using electric fields 

 Robust approach for static and dynamic obstacle avoidance 
 

 Validation through real experiments 
 

 Analysis of the motion of BPMs with the computed parameters  

 Comparison of performance with various environments 

 Evaluation of the potential risk using the danger index 

 

 Quantification of  the boundary effect 
 

 Visualization of the flow field on the bacterial carpet 

 Computation of the strength of the flow fields from tethered/untethered structures 
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1. Adaptive parameters self-calibration for robust performance  

• Probability approach - Machine learning, Neural network algorithm 

• Increase of flexibility for environment 

 
 

2. Swarming obstacle avoidance control 

• Swarm control of multiple microrobots 

• Centralized control 

• Improvement of accuracy locomotion  
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